The causes and potential ecological
consequences of hypolimnetic
hypoxia in Lake Erie’s central basin.
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Hypoxia as a Stressor

e Cultural eutrophication as a cause of hypoxia
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Inter-disciplinary, collaborative
research projects

1) IFYLE (International Field Years on Lake
Erie)

2) ECOFORE (Assessing the causes,
conseguences, and potential remedies

for Lake Erie hypoxia)
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Ecological Consequences
of Hypoxia in Lake Erie:

Piscivorous Fish

International Field Years in Invertivorous Fish
| ake Erie (2005 and 2007)

Benthic invertebrates | | Zooplankton

NOAA-GLERL led effort to
understand the causes and .
ecological consequences of Phytoplankton Microbes

seasonal hypoxia in Lake Erie. T~
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Effects of Hypoxia on Yellow Perch and Rainbow Smelt
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Effects of Hypoxia on Yellow Perch and Rainbow Smelt
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24-hr paired-vessel sampling /| - Zooplankton
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-Zooplankton net and pump
sampling

-Ponar grabs (benthos)

-Midwater and bottom
trawling
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Effects of Hypoxia in Lake Erie.
IFYLE 2005 Strength of

L : evidence
— Distributions of perch and smelt. =

D
c

— Diets of perch and smel.

— Condition/Growth of perch and smel.

All data from Station B




Vertical Distributions of Yellow Perch and Rainbow Smelt
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Vertical Distributions of Yellow Perch and Rainbow Smelt
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Vertical Distributions of Yellow Perch and Rainbow Smelt
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Vertical Distributions of Yellow Perch and Rainbow Smelt
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Diets of Yellow Perch and Rainbow Smelt
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Quantifying Growth and Condition

Traditional measures of growth and condition.

-Integrate feeding history and energetic utilization
over the whole life-time of an organism.

RNA:DNA Ratios

-DNA concentrations within cells remain fairly
constant.

-RNA concentrations increase as protein synthesis
Increases.

-A recently well-fed, growing individual should
have a high RNA:DNA ratio compared to a starving
[gle/\i[e[VELR




Instantaneous effects on growth
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Effects of Hypoxia in Lake Erie.

— Distributions of perch and smelt.
— Lower overall catches during hypoxia.
— Avoid bottom waters during hypoxia.
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Inter-disciplinary, collaborative
research projects

2) ECOFORE (Assessing the causes,
consequences, and potential remedies
for Lake Erie hypoxia)
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ECOFORE 2006-2011: Assessing the
causes, consequences, and potential
remedies for Lake Erie hypoxia

www.sSitemaker.umich.edu/ecoforelake.erie/home

*$2.2 million from NOAA’s Center for Sponsored
Coastal Ocean Research

‘Integrated Assessment (I1A) Framework

‘Multiple-model, ensemble approach

Project goals: Create and apply models to forecast how
anthropogenic (land use, invasive species) and natural (climatic
variability) stresses influence hypoxia formation and the ecology
of the system with an emphasis on fish production potential.




Project Components

Use a linked set of models to forecast:

. changes in nutrient
. Watershed Loading [soaisiede

I H . responses of central
- Flypoxia basin hypoxia to
multiple stressors

. potential ecological responses
lll. Ecological Effects to changes in hypoxia
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|. Watershed Loading

1) Estimate TP loads for all tributaries
« Data from Heidelberg College, point sources
«  Examine sensitivity of loads to hydrologic variation

2) Quantify mass balance estimates for watersheds
Construct P budgets
Develop time sequence of P loadings
Compare inputs to exports

3) Evaluate conservation practices
Statistical analysis
Watershed agricultural estimates
Correlations between conservation and nutrient loading

4) Develop models of hydrology and nutrient export
«  Soil and Water Assessment Tool (SWAT)
«  Distributed Large Basin Runoff Model (DLBRM)

-Inputs for hypoxia models




Study sites: 24 Lake Erie watersheds




P Fertilizer use for the Lake Erie watersheds from 1972 to 2002
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Historical trend in annual P fertilizer input

to selected watersheds and the entire LEB
from 1972 to 2002
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Il. Hypoxia Forecasting Modeling Approaches

* Models ranging in complexity

— 1D hydrodynamics with DO consumption rates

 Vertical thermal and mixing profiles from hydrodynamic model
« DO mass lost from water column and sediment demand

— 1D hydrodynamics with simple mechanistic WQ model
« TP, Carbon, Solids mechanisms driven by central basin
concentrations as boundary conditions
— 1D hydrodynamics with simple mechanistic WQ model
« TP, Carbon, Solids mechanisms driven by basin loads

— 3D hydrodynamics with complex mechanistic WQ model
« WQ framework similar to Chesapeake Bay ICM model

« Multi-class phyto- and zooplankton, organic and inorganic
nutrients, sediment digenesis, etc

« Addition of zebra mussels

-Inputs for hypoxia models




-SOD = 0.75 g/m2/d
-WCOD, = 0.0 g/m3/d

1989 WCOD, = 0.06 g/m3¥d 1994 wcoD, = 0.002 g/m?d
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Central Basin Oxygen Depletion Rate

Using tentative alternate method, Rucinski et al. (in prep)
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Central Basin Oxygen Depletion Rate

D. Rockwell, GLNPO, using Rosa and Burns (1987)
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Total Phosphorus (ug-P/L)

Central Lake Erie Total Phosphorus
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lll. Ecological Effects

Objective: develop forecasts that managers
can use to guide fisheries policies In
response to anticipated hypoxia impacts.

Ensemble of Models

» Statistical models

» Bioenergetics-based population models

| — Growth Rate Potential (GRP)
— IBM (Individual Based Bioenergetics)

* Food-web models
— Comprehensive Aquatic Simulation Model (CASM)
— EcoPath with EcoSim and EcoSpace




Growth rate potential models (GRP)

Bioenergetic Growth Rate Potential (GRP; g g' day):

Expected daily growth rate of a fish placed in a volume of water
with known conditions:

Potential input variables:

* prey density (prey type, prey size)

* temperature
e OXygen
e light




Growth rate potential models (GRP)
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Effect of hypoxia on consumption

Mean Consumption (g/g/d)
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Growth rate potential (GRP) per cell
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Lake Erie’s central basin 2’ x 2’ grid

-Output from 1-D hypoxia model to populate daily mean
temperatures and oxygen concentrations in bottom waters of
central basin.

-Use these values as input for growth rate potential model.




Daily consumption potential of 10-g yellow perch in
hypolimnion of offshore Lake Erie during 1994




Daily growth potential of 10-g yellow perch in hypolimnion
of offshore Lake Erie during 1994




August-September 1994 (61 days)
L

Hypoxia effect

Mean Daily
Growth (g/d)
10-g y. perch




August-September (61 days)

1994 Mean Daily
Growth (g/d)
10-g y. perch

| 5

o 2004 0.031 - 0.045
0.046 - 0.060
| 0.061 - 0.075
| |
| .-.=======ll===l= 0.076 - 0.090
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Conclusions

Huge hypoxic area in central Lake Erie

Related to P-loading from western Lake Erie

Magnitude of hypoxia may be increasing

Effects on fish are evident at the individual level
= Population-level effects are equivocal

e ) 1 i\fﬂj TR0 i A
" .|' | *'}. LM I

| LA
d ALY LIS |4




Il. Hypoxia

« Develop and test two types of forecasting
tools
— 1-D Limnological Model
— 3-D Limnological Model

» Assess the relative importance of three
potential causative factors:

— Climate
— Phosphorus inputs
— Dreissenid invasion




