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Conventional methods for soil sampling and analysis for soil variability in chemical characteristics are too
time-consuming and expensive for multi-seasonal monitoring over large-scale areas. Hence, the objectives of
this study are: 1) to determine changes in chemical concentrations of soils that are amended with treated
sewage sludge; and 2) to determine if LANDSAT TM data can be used to map surface chemical characteristics
of such amended soils. For this study, we selected two fields in NW Ohio, designated as F34 and F11, that had
been applied with 34 and 11 ton acre−1 of biosolids, respectively. Soil samples from a total of 70 sampling
locations across the two fields were collected one day prior to LANDSAT 5 overpass and were analyzed for
several elemental concentrations. The accumulation of Ba, Cd, Cu, S and P were found to be significantly
higher in the surface soils of field F34, compared to field F11. Regression equations were established to search
for algorithms that could map these five elemental concentrations in the surface soils using six, dark-object-
subtracted (DOS) LANDSAT TM bands and the 15 non-reciprocal spectral ratios derived from these six bands
for the May 20, 2005, LANDSAT 5 TM image. Phosphorus (P) had the highest R2 adjusted value (67.9%) among
all five elements considered, and the resulting algorithm employed only spectral ratios. This model was
successfully tested for robustness by applying it to another LANDSAT TM image obtained on June 5, 2005. Our
results enabled us to conclude that LANDSAT TM imagery of bare-soil fields can be used to quantify and map
the spatial variation of total phosphorous concentration in surface soils. This research has significant
implications for identification and mapping of areas with high P, which is important for implementing and
monitoring the best phosphorous management practices across the region.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Application of treated sewage sludges (biosolids) to agricultural land
has become a prominent and acceptable method of waste disposal in
recent years. Biosolids are known to improve soil physical characteristics
(Epstein et al., 1975; Wei et al., 1985), increase the organic matter and
cation exchange capacity and supply the nutrients required for crop
growth (Sommers, 1977; Singh and Agrawal, 2008). However, the
potential for excess application of biosolids, resulting in a build up of
nitrogen, phosphorus (Mantovi et al., 2005), zinc, copper, lead (Mantovi
et al., 2005; Udom et al., 2004; Nyamangara and Mzezewa, 1999) and
cadmium (Bergkvist et al., 2003) in the surface soils of agricultural fields
continues to be an area of concern. Accumulation of phosphorus at high
concentrations is a major environmental concern, as it affects thewater
quality of lakes and rivers in the event of runoff (Shober and Sims, 2003).
Hence, there is an increasing need to continuouslymonitor the extent of

soil contamination in biosolid-applied fields. Even though conventional
methods of soil sampling and testing are being used for this purpose,
they are often expensive, time-consuming and unsuitable for mapping
soil contamination over large areas.

Remote sensing has been used as an alternative method for deter-
mining and mapping the physical and chemical characteristics of the
soil. High resolution aerial imagery was used tomap the organic carbon
(Chenet al., 2000), claycontent (Sullivanet al., 2005), organicmatterand
Bray-1 phosphorus concentration (Varvel et al., 1999) in bare soils.
Dematte et al. (2003) reported that chemical variations in soil resulting
from fertilizer applications can be detected, based on the intensity of
reflectance. Several studies showed the use of spectral reflectance to
determine the soil color (Post et al., 2000), texture and particle size
distribution (Chang et al., 2001), soil moisture (Lobell and Asner, 2002),
iron oxides (Ji et al., 2002), carbonates (Ben-Dor and Banin, 1990), clay
(Ben-Dor and Banin, 1995), organic carbon (Dalal and Henry, 1986;
Morra et al., 1991; Reeves et al., 2002) organic matter (Henderson et al.,
1992) and soil phosphorus (Bogrekci and Lee, 2005, 2007).

The addition of soil contaminants as a result of biosolid application
tends to be concentrated in surface soil samples (Mantovi et al., 2005;
Bergkvist et al., 2003; Udom et al., 2004; Nyamangara and Mzezewa,
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1999). Consequently, the focus of this study was to determine the use
of remote sensing to map chemical variability in bare soils. The
objectives of this study were: 1) to determine changes in elemental
concentrations of soils amendedwith biosolids; and 2) to use LANDSAT
TM data to map these elemental concentrations of the soils when they
are not covered by vegetation (bare).

2. Materials and methods

2.1. Soil sampling and chemical analysis

Two adjacent agricultural fields, F34 and F11, that received a
cumulative amount of 34 ton acre−1 (76 Mg hac−1) and 11 ton acre−1

(25Mghac−1) of Class Bbiosolidsonadryweight basis during theperiod
of 1985–2002 were selected for this study (Fig. 1). Soil samples were
collected at 0, 30, and 50 cm depths from each of the 70 sampling
locations across the two fields. These fields were selected because they
are representative of large areas of northwest Ohio where land
application of biosolids has become an important agricultural practice.
The soil samples were collected on May 19 of 2005, one day prior to
LANDSAT over pass, and the sampling locations were marked using a
Trimble GeoExplorer (Trimble Navigation Limited, CA, USA) global
positioning system (GPS) receiver. The collected soil sampleswere dried
and passed through a 2 mm sieve. The moisture content of the surface
soil samples wasmeasured using the gravimetric method. The source of
sewage sludge for the agriculturalfields in the studyareawas theOregon
Waste Water Treatment Plant (OWWTP). The basic composition of the
sewage sludge of OWWTP is typical of the bio-solids produced in Ohio,
which is regulated within the limits set by the U.S. Environmental
Protection Agency (USEPA) under the part 503 rule (USEPA, 2002).

Soil samples (approximately 0.5 g) were digested with concen-
trated HNO3, according to USEPA method SW846-3051A (USEPA,

1998) using a Mars Xpress microwave digestion unit (CEM, Matthews,
NC, USA). The digested solution was filtered and then analyzed for As,
B, Be, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si and Zn
concentrations using inductively coupled plasma-optical emission
spectrometry (ICP-OES) (IRIS Intrepid II, Thermo Scientific, Waltham,
MA, USA). Quantification was achieved using matrix matched high
and low concentration standards for each element. Internal quality
controls and blanks were run every ten samples in order to quantify
cross-contamination and recovery efficiencies.

Analysis of variance (ANOVA) was used to compare the accumula-
tion of each element in the F34 and F11 fields using SAS version 9.1
statistical software (SAS Institute Inc., Cary, NC, USA). An alpha level of
0.05 was used to determine the significance.

2.2. LANDSAT data acquisition and analysis

The LANDSAT image frames of May 20 and June 5, 2005, covering
the study area were downloaded soon after soil sampling. They were
then processed with the ER Mapper image processing software, a
commercial product of Earth Resources Mapping, Inc. The study area
was located within the LANDSAT overpass region of Path 20, Row 31.
The natural color image of the study area, overlaid with outlines of the
fields permitted for Class B biosolid applications, is shown in Fig.1. The
locations of all the 70 soil sampling points collected one day prior to
LANDSAT 5 overpass were also shown separately in Fig. 1 on the
natural color image of the study area. The study site was dry, without
any vegetation, implying that image spectral reflectances represent
the spectral reflectance of soil. The procedure for developing the GIS
database of the Class B biosolid permitted fields in Wood and Lucas
counties of northwest Ohio was reported in detail by McNulty (2005).

Based on the locations of the 70 soil samples, the dark object
subtracted (DOS) pixel values corresponding to the LANDSAT TM bands

Fig. 1. The LANDSAT 5 TM natural color image (TM bands 1, 2, and 3 displayed as BGR, respectively) obtained on May 20, 2005 showing the eastern part of Lucas County in northwest
Ohio; this area drains into Lake Erie, which is towards the northern side (top) of the image. The fields permitted for Class B biosolid application in the area are outlined in the image.
The fields marked with red borders are the experimental fields used in this study. Soil sampling locations of the study area were shown as yellow dots in the insert image.
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1–5 and 7 were derived from the original May 20, 2005 image. The
spectral range of these LANDSAT TM bands are as follows: band 1: 450–
520 nm; band 2: 520–600 nm; band 3: 630–690 nm; band 4: 760–
900 nm; band 5: 1550–1750 nm; and band 7: 2080–2350 nm. The dark
object of each spectral band is defined as one value less than the
minimum digital number found in all the pixels of the image (Vincent
et al., 2004). The detailed procedure for DOS and its effects on removal of
atmospheric hazewas given in Vincent (1997) and Vincent et al. (2004).
From the DOS-corrected digital number (DN) values of the six LANDSAT
single bands, 15 non-reciprocal spectral ratios were calculated. These
spectral ratios are: R2,1; R3,1; R3,2; R4,1; R4,2; R4,3; R5,1; R5,2; R5,3; R5,4; R7,1;
R7,2; R7,3; R7,4; R7,5 where R represents the ratio and the numbers
represent the LANDSAT TM band numbers (Vincent, 1997). The spectral
ratios were calculated using the MINITAB statistical software (MINITAB
Inc., State College, PA, USA).

2.3. LANDSAT TM best spectral ratio model development and validation

The relationships between the chemical concentrations of the
surface soil samples and the DOS DN values corresponding to the six
single bands and the 15 non-reciprocal spectral ratios were developed
by regression analysis. Using the MINITAB regression analysis compo-
nent the best subsets regression was employed, and only the top two
models with the highest R2 adjusted values were chosen to report for
each number of variables. The best subsets procedure was used for
sequentially entering independent variables one at a time to improve
the regression equation's predictive ability. The reported models from
the best subset regression output were tested for autocorrelationwith a
Durbin–Watson (DW) statistical test (Durbin and Watson, 1951). This
tests for autocorrelation in the input parameters. Finally, the model
which had the highest R2 adjusted and that also passed the DW test was
selected as the bestmodel for given inputs. This procedurewas reported
in detail elsewhere by Vincent (2000) and Vincent et al. (2004). The
identified best model was then applied to the same May 20, 2005,
LANDSAT image, which was used in developing the model to map the
elemental concentration of the surface soils. Themodelwas also applied
and validated using the June 5, 2005, LANDSAT image, which was
obtained 17 days after the soil sampling. In the LANDSAT images that
were applied with the best model, masks were created to limit the
display to only bare soil fields.

2.4. Laboratory spectral data acquisition and analysis

AFieldspec Pro spectroradiometer (ASD Inc., Boulder, CO,USA)with a
spectral range of 350–2500 nm was used to obtain the reflectance
spectra of the collected soil samples in the laboratory, with a quartz–
tungsten–halogen (QTH) lamp as a light source. Diffused light from the
100 W Lowell Pro-Light was used to illuminate the soil samples that

were placed in a Petri plate at 45° angles,when spectrawere collected in
the laboratory. The fore-optics of the spectroradiometer was aligned
vertically, and theheightof the fore-opticswas adjusted so that reflected
light only from the surface of the soil samples filled the field of view
(FOV) of the instrument. The height of the foreoptics was kept constant
throughout the experiment at 20 cm from the surface of each soil
sample. The same experimental setup was used to obtain the spectra of
all the soil samples collected at 3 different depths from each field.
Calibration spectra of a white Spectralon panel (Labsphere Inc., North
Sutton,NH)were acquired before recording the soil spectra. The spectral
recording software in the spectroradiometer was set in such a way that
each reflectance spectrum recorded was obtained by collecting and
averaging 20 individual reflectance spectra. Each spectrumwas normal-
izedbydividing it by themeasuredspectrumof the standard (Spectralon
panel). The configuration of the ASD spectroradiometer consists of three
detectors, each collecting spectra from the 350–1050, 900–1850, and
1700–2500 nm spectral regions, respectively. The spectra collected by
these detectors within the instrument are not spliced together. Hence,
each normalized spectrumwas splice-correctedwith the ASDViewSpec
software (ASD Inc., Boulder, CO). Individual spectral measurements of
the soil samples corresponding to the three sampling depths in each of
the fields were then averaged to overcome the spectral variations.

3. Results

3.1. Soil chemical concentration

The chemical concentration of the soils at 0, 30 and 50 cm depths
and the moisture content of the surface soils in both the F34 and F11
treated fields are shown in Table 1. Among all the chemicals that were

Table 1
Chemical concentration of soils applied with 34 ton acre−1 (F34) and 11 ton acre−1 (F11)
of Class B biosolids

Treatment Soil depth Ba Cd Cu S P Moisture
(cm) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (%)

F34 0 161 5.7 55 405 2550 9.7
(±28.5) (±0.5) (±5) (±57) (±625) (±7.3)

30 103 5.7 37 197 796
(±16.7) (±0.46) (±5.1) (±55) (±439)

50 97 5.6 35 154 557
(±14.4) (±1.1) (±6.1) (±31) (±103)

F11 0 98 3.6 37 265 988 5.5
(±19.1) (±1.9) (±6.6) (±68) (±303) (±2.5)

30 100 3.5 31 165 588
(±13.3) (±0.9) (±5.1) (±49) (±177)

50 99 3.7 31 132 558
(±13.5) (±0.9) (±4.9) (±51) (±149)

The given values are means±standard deviation of 35 replicates.

Fig. 2. Averaged (n=35) spectral reflectance of the soil samples collected at 0, 30 and
50 cm depths in F34 and F11 treated fields. Also given are the averaged total P
concentrations (in mg/kg) corresponding to the soil samples. The spectral reflectance of
the soils decrease with increase in P concentration. The surface soil samples of field F34
have high P concentration (2550 mg/kg) and low spectral reflectance throughout the
spectral range, compared to the rest of the soil samples.

Table 2
Best spectral ratio input models for phosphorous, copper, and sulfur that pass the
Durbin–Watson test along with the values of R2 adjusted and SE (standard error)

Chemical Best spectral ratio model R2 adjusted (%) SE (mg/kg)

Phosphorus 4156−1690 (R51)+2257 (R73) 67.9 531.2
Copper 75−17.9 (R51)+21.9 (R73) 59 6.9
Sulfur 507−14.7 (R51)+214 (R73) 49.3 66.8

Note: The models developed for Cd and Ba did not pass the Durbin–Watson test at 5%
level of significance.
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analyzed, the accumulation of Ba, Cd, Cu, S and P were significantly
(pb0.05) higher in the surface soils of F34, compared to F11 (Table 1).
There was no significant difference in the chemical concentrations at
30 and 50 cm depths among the F34 and F11 soils. Also, the moisture
content of the surface soils in both the fields was similar (Table 1). The
soils were of the prevalent latty silty clay type with surface soils
having 40–55% of clay and 3–5% of organic matter (Soil Survey Staff,
2007).

3.2. Spectral reflectance of soil samples

The averaged spectral reflectances of the F34 and F11 soils
obtained at 0, 30 and 50 cm depths are shown in Fig. 2. The re-
flectance of the soil samples gradually increases from 350 nm to about
2200 nm, then decreases to about 2500 nm. There is a broad, shallow
reflectance minimum between 600 and 1100 nm (centered about
850 nm), which is likely due to trace amounts of iron present in the
soils. The two absorption bands (reflectance minima) near 1400 and
1900 nm in the spectra are due to the in-situ soil moisture. All the soil
samples that were used in obtaining the spectra in the laboratorywere
dried and passed through a 2 mm sieve to minimize the effects of soil
moisture and particle size on the spectra.

3.3. LANDSAT spectral ratio model

Regression equations were established to determine the chemical
concentrations of Ba, Cd, Cu, S and P, which are significantly (pb0.05)
higher in the surface soils of F34 compared to F11, using the DOS-
corrected six TM bands and the 15 non-reciprocal spectral ratios. The
best spectral ratio input models that pass the DW test of significance
along with their R2 adjusted and standard error values are given in
Table 2. None of the single band models passed the DW test. Phos-
phorus had the highest R2 adjusted value (67.9%) among the chemical
attributes that passed the DW test (Table 2) and are considered for
mapping P with LANDSAT TM data. Hence, only the P results were
shown in this paper. The P values obtained from chemical analysis of the
70 surface soil sampling locations versus thepredictedvalues of P for the
same locations obtained by applying the P spectral ratio model
P (mg/kg)=4156−1690 (R51)+2257 (R73) to theMay20, 2005, LANDSAT
TM frame is given in Fig. 3. The P spectral ratiomodelwas also applied to
the June 5, 2005 LANDSAT image frame and the predicted P valueswere
plotted against the P values obtained by the soil analysis (Fig. 4). The
model performed well in predicting the P concentrations of surface soil
when applied to either of the LANDSAT TM images.

The application of the best P spectral ratio model to the LANDSAT 5
TM frame of May 20, 2005, which was also used in developing the
model, is shown in Fig. 5. The redder color in this image corresponds
to higher amounts of P in surface soil. Fig. 6 shows the image of the

Fig. 3. Actual versus predicted P concentration (in mg/kg) of surface soil samples using
the dark object subtracted best P spectral ratio model being applied to the LANDSAT 5
TM frame of May 20, 2005, which was also used for developing the model.

Fig. 4. Actual versus predicted P concentration (in mg/kg) of surface soil samples using
the dark object subtracted best P spectral ratio model being applied to the LANDSAT 5
TM frame of June 5, 2005.

Fig. 5. Image showing the total P concentration (mg/kg) in surface soil samplesoffields F34
(left side of the image) and F11 (right sideof the image), displayedas red (high P content) to
turquoise (low P content), obtained by applying the best P spectral ratio model to the
LANDSAT 5 TM frame of May 20, 2005 which was also used for developing the model.

Fig. 6. Image showing the total P concentration (mg/kg) in surface soil samples of fields
F34 (left side of the image) and F11 (right side of the image), displayed as red (high
P content) to turquoise (low P content), obtained by applying the P spectral ratio model
to the LANDSAT 5 TM frame of June 5, 2005.
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same spectral ratio model that was developed using the LANDSAT 5
frame of May 20, 2005, being applied to the LANDSAT 5 frame of June
5, 2005. Note that the P concentration in the F34 field is significantly
higher than the F11 field in both the images (Figs. 5 and 6). The
application of the best P spectral ratio model to the May 20, 2005,
LANDSAT TM image, showing the part of the watershed that drains
into Lake Erie, is given in Fig. 7. The fields outlined in this figure are
permitted for Class B biosolid application.

4. Discussion

The analytical results showed that the accumulation of P in surface
soil samples of F34 was about 2.6 times higher than for the F11 soils.
This confirms the report of Chang et al. (1983) that five continuous
years of biosolids application in two California soils at 0, 22.5, 45 and
90 ton per hectare increased the total P concentration of surface soil
(0–15 cm) from 515–540 mg/kg to 1092–1312, 1657–2163 and 2617–
3470mg/kg, respectively. Similarly Maguire et al. (2000) reported that
the concentration of total soil P in surface soils (0–20 cm) of biosolid
amended soils was 738 mg/kg, or nearly double the values in
unamended soils, where the total soil P was 403 mg/kg. High
concentrations of Cd and Cu in the surface soils of F34 compared to
F11 agree with the reports of Nyamangara and Mzezewa (1999), that
the long-term application of biosolid increases the accumulation of Cd
and Cu in the surface soils.

Our spectral results showed that the intensity of spectral re-
flectance (from350–2500 nm spectral range) decreases with increases
in P concentration of the soils (Fig. 2) agreeing the results of Bogrekci
and Lee (2005). Bogrekci and Lee (2005) also showed that the removal
of P and other nutrients from soils through leaching results in an
increase in the spectral reflectance of soils. In our study, the re-
flectance of the soil samples (Fig. 2) decreased more in the NIR region
compared to the visible region. Bogrekci and Lee (2007) found a good
relationship between reflectance and P concentration with coeffi-
cients of determination of 0.93, 0.95 and 0.76 for total, Mehlich-1 and
water soluble P. The reflectance of F34 surface soil samples is low
compared to the rest of the soil samples and this can be attributed to
its high total P concentration of 2550 mg/kg (Fig. 2).

LANDSAT TM data can be used to estimate andmap some chemical
characteristics of soils, such as total phosphate content, as shown in
this study. Our results enabled us to conclude that remotely sensed
imagery of bare soil fields can be used to quantify and map the spatial
variation of total P concentration in surface soils. The technology is
simple enough to be applied to the entire watershed. The P spectral
ratio model was more robust and reliable than the single band input
models and can be applied to bare soil fields with low (b13%) soil
moisture.

Nanni and Dematte (2006) have successfully employed LANDSAT
TM data to estimate the sand, silt, clay, organic matter, cation
exchange capacity (CEC) and sum of cations in Brazilian soils. They
derived spectral reflectance values from the corrected LANDSAT image
to develop multiple regression equations in order to estimate the
different physical and chemical characteristics of the soils; however,
no soil maps were presented in that study (Nanni and Dematte, 2006).
Our study is significant because it represents the first successful effort
in using LANDSAT TM data to estimate and map P concentration in
surface soils. We also successfully validated the P spectral ratio model
by applying to another LANDSAT image obtained on June 5, 2005.

Aerial imagery was used to map the organic carbon (Chen et al.,
2000), clay content (Sullivan et al., 2005), organic matter and Bray-1
phosphorus concentration (Varvel et al., 1999) and LANDSAT TM
imagery was used to estimate the physical and chemical properties
(Nanni and Dematte, 2006) of surface soils in the previous studies.
However, the algorithms developed in these studieswere based on the
reflected image intensity values of the soils, which required correction
for atmospheric haze with atmospheric models before applying the
algorithms to another date. The P spectral ratiomodel developed in our
study is based on the DOS-corrected spectral ratios and is more robust
than any model that could be derived from a combination of single
spectral bands. Vincent et al. (2004) showed that theDOS spectral ratio
models were more robust than single band models and can be applied
with reasonable accuracy to different times of data collection, though
their subject was cyanobacteria blooms in lakes or streams, and the
present study is about P concentrations in bare soils on dry land.

By applying our P spectral ratiomodel, we can identify andmap the
P concentration in surface soils as a result of biosolid application.
Because P accumulation in soils can also result from the application of
biosolids, animalmanures, andman-made fertilizers, this research has
significant implications in identifying the fields with high concentra-
tions of surface soil P, thus helping in the implementation of P-based
management practices on agricultural fields, with an aim toward
reduction of P runoff into nearby surface water bodies.

Shober and Sims (2003) reported that twenty-four of the states and
territories in theUnited States nowhave regulations to restrict the land
application of biosolids, based on phosphorus concentration in soil.
Thirteen of these 24 states have established actual numerical limits for
soil test phosphorus (STP), with an aim to cease the application of
biosolids once these limits are reached. As the total soil P and STP are
linearly related to each other (Allen and Mallarino, 2006), our P
spectral ratio model can be used to monitor P levels in surface soils.
One limitation of this P model is that it was developed using bare soil
fields that had a low surface soil moisture (b13%); thus, we have no
evidence that this model will be accurate for fields with soil moisture
contents greater than that value. In the future we will be examining
this P model on fields with higher moisture contents. Further, we will
test the model to determine the P concentration in surface soils of
other soil types in this region, though the soils tested were of the
prevalent type (Latty Silty Clay).
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