

Solutions for the problem

- Risk assessment problem or not?
- No decision / action vs. decision / action
- Consider all available options
- Implement viable option(s)
- Monitor results
- Modify approach if indicated

IPM Approach Integrated Pest Management 1) Environmentally sound - Cure should not be worse than the disease

- 2) Economically viable
- Solution should not cost more than the problem

The Villains - Planktonic

- Premnesium
- Microcystis
- Anabaena
- Cylindrospermopsis
- Hydrodictyon
- Anacystis
- Asterionella, Tabellaria, Synedra

The Benthic Villains

- Lyngbya
- Oscillatoria
- Oedogonium
- Spirogyra
- Pithophora
- Nitellopsis

What is the Golden Alga?

- Prymnesium parvum
- > Microscopic yellow-green alga
- ➢ Mixotrophic >Produces toxins

Rock Snot "Didymo" <u>Didymosphenia geminate</u>

Invasive diatom species

- Thrives in nutrient poor water
- Found on the bottoms of streams and rivers where it attaches itself by stalks
- •Can cover 90% of stream bottom-South Dakota
- Affects the food chain and fish populations
- . Tennessee anglers are encouraged to report sightings and properly clean all boats and equipment
- The alga has been found in Arkansas, Montana, South Dakota, Tennessee and British Columbia in North America

MONITORING PLAN

- Location: Various- to cover the entire system.
- Frequency Observe conditions and collect samples weekly.
- Preservation: Keep samples cool and analyze quickly. Do not preserve.
- Results: Report immediately.

Experimental Objectives

- To determine the most efficient and effective [Cu] using Cutrine®-Plus to control *Prymnesium parvum* in two site-waters: Lake Whitney, Texas and Water Ranch Lake, Arizona.
- To compare responses of *Prymnesium parvum* from two locations to exposures of a copper-containing algaecide (Cutrine[®]-Plus).
- To measure the response of *Pimephales promelas* to concentrations of Cutrine® Plus that control growths of *Prymnesium parvum*.

Trymnestum Toxicity Experiment				
1. Test type:	Static, non-renewal			
2. Temperature (°C):	23 ± 2 ℃			
3. Light quality:	"Cool white" fluorescent lighting			
4. Light intensity:	86 \pm 8.6 $\mu E/m2/s, or 400 \pm 40$ (ft-c)			
5. Photoperiod:	16:8, light:dark			
6. Size of test vessel:	250 ml Erlenmeyer flask			
7. Genus and Species of Algae:	Prymnesium parvum			
8. Treatments	0.2, 0.4, 0.6, 0.8, 1.0 mg / L of Cu as Cutrine®- Plus			

Prymnesium Toxici	ty Experiment (Continued)
9. No. of replicate test vessels per concentration or dilution:	4 replicates
10. Algal Mixing:	Swirling once daily by hand
11. Aeration:	None, unless DO concentration falls below 40% of saturation, at which time start gentle, single-bubble, aeration
12. Test duration:	96 hours Observations daily
13. Endpoints measured:	Cell counts: microscope counting using a hemacytometer (APHA, 1995) and chlorophyll content: measuring chlorophyll a using a smoctrofluoremetre (APHA 1995)

Analysis of Data

 $H_0 = 0.2 = 0.4 = 0.6 = 0.8 = 1.0 \text{ mg Cu} / \text{L}$

- [Cu]s required to control *Prymnesium parvum* (EC₁₀₀s) were determined.
- ANOVA and Regression Analysis were used to determine concentrations which were statistically significant.
- Water chemistry parameters such as DO, temperature, conductivity, pH, hardness, and alkalinity were measured and recorded throughout experiments according to Standard Methods (APHA 1995).

Site Water Characteristics						
Problem algal species	Water Source	<i>р</i> Н (avg.)	Hardness (avg.)	Alkalinity (avg.)	Conductivity (avg.)	
Scientific name	Site	SU	mg / L as CaCO ₃	mg / L as CaCO ₃	μS / cm²	
Prymnesium parvum	Lake Whitney (Clifton, TX)	8.27	312	130	1604	
Prymnesium parvum	Water Ranch Lake (Gilbert, AZ)	7.75	411	104	2700	

	Mar	gin of Sa	fety (MO	S)
Scientific name	Algaecide	96 h LOECª Pimephales promelas (mg / L)	EC ₁₀₀ ^b Prymnesium parvum (mg / L)	MOS °≕ LOEC of <i>Pimephales</i> <i>promelas /</i> [Cu] required to control <i>Prymnesium parvum</i> (mg / L)
Pimephales promelas	Cutrine [®] - Plus	0.750	0.2	3.75
^a Lowest Obs (Murray-G ^b [Cu] used to ^c Margin of S	erved Effect ulde et. al, 20 o control <i>Pryr</i> Safety (MOS)	Concentratio 02) nnesium parv	n <i>um</i> (EC ₁₀₀)	

Observations and Conclusions

Prymnesium parvum produces a neurotoxin that has killed millions of fish in Arizona and Texas waters.

P. parvum was controlled by a short-term (2 - 4 d) exposure of 0.2 mg Cu / L as Cutrine®-Plus in waters from both Arizona and Texas. Arizona site algaecide treatment recommendations were based on data presented in this presentation. Field applications have been successful in Arizona with no reoccurrence of *P. parvum*, and no fish mortality after several months.

Observations and Conclusions (Continued)

A Margin of Safety (3.75) was calculated using EC₁₀₀ for *P. parvum* at each site and the LOEC for *Pimephales promelas* using Cutrine®- Plus. Since the MOS is greater than 1, there is a margin of safety associated with using Cutrine®-Plus to control P. parvum.

Do Algae Spill Their Guts After Algaecide Treatment?: A Test of the Leaky Cell Hypothesis

John H. Rodgers, Jr., O'Niell R. Tedrow, and B. Maurice Duke Department of Forestry and Natural Resources Clemson University

"Leaky Cell" Hypothesis

- Following exposure to algaecides or water treatment chemicals, algae (cyanobacteria) release intracellular contents.

 - Coptrol[®].
 Microcystin(s) (Jones and Orr 1994).
 Chlorine, KMnO₄, AISO₄, H₂O₂.
 MIB, GSM, DOC (Peterson et al. 1995)
- Appropriate consideration for action / no
- action?
- Appropriate consideration for no algaecide decision?

- Release following exposure not universal(?); however universally applied.
 - Lyngbya, Cylindrospermopsis,
 **Microcystis.

- Risks.
- Affects recreation, fishing, aesthetics.

Pawnee Reservoir Site Characteristics

- Approx. 300 ha. (~750 acres)
- >200 campgrounds / recreation areas.
- Primary uses:
 - Contact recreation:
 boating, skiing, fishing.
 - Agricultural water supply.

Problems Caused by Microcystis

- Displace native / beneficial aquatic organisms.
- Toxin production / release.
 - Microcystis aeruginosa.
 - Microcystin(s).
 - Hepatotoxin(s).
 - Toxic to mammals, fish in low aqueous
 - concentrations (≤ 1 μg / L).

Experimental Objectives

- Determine effective [Cu] to control *M. aeruginosa.*
 - Site water; Pawnee Reservoir, NE.
- Measure responses in terms of chl a and cell density.
- Measure responses in terms of microcystin concentrations.
 - Pre- and post- exposure.

		igueera			
	Cutrine [®] - Ultra Clearigate		Algimycin [®] PWF	Copper Sulfate Pentahydrate	
% Cu as elemental	9.0	3.8	5.0	25.4	
Formulation	Copper- Triethanolamine Complexes and D-limonene	Copper- Ethanolamine and D- limonene	Chelates of Copper Citrate and Copper Gluconate	CuSO ₄ •5H ₂ O	
Chemical class	Chelated Elemental Copper	Chelated Elemental Copper (Cu ₂ CO ₃)	Weakly Chelated Copper	Copper salt	
Appearance	Blue Viscous Liquid	Blue Viscous Liquid	Blue Viscous Liquid	Blue Crystalline	
Odor	Orange	Orange	Slight	Odorless	
Water Solubility (mg/L)	Miscible	Miscible	Complete	316,000	
pH	9.5-10.0	9.5-10.0	1.5-2.0	NA	

E	xposure	Algaecide			
Cor (ncentration (ppb Cu)	Cutrine [®] -Ultra	Clearigate [®]	Algimycin [®] PWF	CuSO ₄ x 5H ₂
(Ba	Initial ackground)	23	49	49	49
	200	212	210	289	243
	400	440	485	472	456
	600	673	736	674	700
	800	901	981	962	873
	1000	1090	1160	1137	1148

	Water Cha	racteristics	
	Water Characteristic Parameter	Range for Algaecide Exposures	111
	pH (SU)	7.7-9.7	10.00
	D.O. (mg O ₂ / L)	4.6-11.7	a ster
	Alkalinity (mg CaCO ₃ / L)	136-200	
	Hardness (mg CaCO ₃ / L)	96-200	
	Conductivity (µS / cm ²)	418-513	
and the second	And the second second	Survey and The	1

References

- Peterson, H.G.; Hrudey, S.E.; Cantin, I.A.; Perley, T.R.; Kenefick, S.L. 1995. Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by *Aphanizomenon flos-aquae* after exposure to water treatment chemicals. Water Research 29(6), 1515-1523. Jones, G.J., Orr, P.T. 1994. Release and degradation of microcystin following algicide treatment of a *Microcystis aeruginosa* bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Research 28(4), 871-876.

Treatments – Chemical

TEXAS PARKS &

- Copper algaecides Copper sulfate CuSO₄ some species and life stages of fish are very sensitive to copper ion in water not a preferred method (harmful to primary and secondary production)
 - Cutrine[®] Plus chelated form of CuCO₃ effective treatment = 0.2 mg/L total copper treatments ≥ 0.4 mg/L caused significant rainbow trout mortality

The Villain = Lyngbya wollei

- Prokaryote Cyanobacteria
- Filamentous
- Mucilagenous sheath
- Cell Wall
- Productivity low light, rapid growth
- Production- standing crop
- Dispersal fragments
- Toxin production

Consider all available options

Lyngbya wollei

- Biological
- Physical
- Mechanical -
- Chemical
- Combinations

Consider All Available Options Laboratory Studies • Copper formulations • Algimycin®-PWF, Earth Tec, Cutrine®-Plus, Cutrine®-Ultra, Clearigate • Peroxide formulations • Green-Clean®, Green-Clean® PRO, PAK™ 27, Phycomycin • Endothall Formulations • Hydrothol®191, Aquathol® • Diquat dibromide • Reward®

Conclusions and Observations to Date

- ~ 70% decrease in Chlorophyll a
- Absence of Lyngbya surface mats
- Light brown to yellow coloration observed - Lyngbya surface mats and benthic mats
- Treated benthic mats are less cohesive than untreated mats

Observations

- No decision is a decision. However, no decision does not = zero risk.
- Multiple treatments/ monitoring are often required (management).
- Success of treatments often depends on applicator skill and equipment.
- Timing of treatments can be important (less density, higher dissolved oxygen, etc.) Risk assessment can help to focus decisions.

Is this in your future?

HEALTH ADVISORY

TOXIC ALGAE PRESENT IN THIS WATER. **NO** Full Body Contact. Avoid Ingesting Lake Water. Monitor Small Children & Pets. Avoid Concentrations of Algae.

HAB Toxicology – Traditional vs. New

- TRADITIONAL
- Who is it? Where is it?
- What is it doing?
- What toxin is it producing?
- Who is adversely
- Who is interested in a report?
- NEW
- Who is it? What are the probable risks (risk assessment)?
- What are we going to do about it? What can we do?
- Do it!
 - Monitor and learn.

Factors influencing algaecide selection

- Target algal species (strain)
- Water resource usages
- Water body and water characteristics
- Efficacy
- Costs
- Margin of safety for non-target
- species

Scientif	ic	Marg Algaecide	<mark>96 h</mark> LOECª Pimephales promelas (mg / L)	EC 100 b EC 100 b Prymnesium parvum (mg / L)	S) MOS ⊂= LOEC of Pimephales promelas / [Cu] required to control Prymnesium parvum (mg / L)
Pimepha promela	iles as	Cutrine [®] - Plus	0.750	0.2	3.75
^a Lowest ((Murray ^b [Cu] use ^c Margin	Obso 7-Gu ed to of S	erved Effect (ilde et. al, 20) control <i>Pryn</i> afety (MOS)	Concentration 02) nnesium parvi	1 <i>um</i> (EC ₁₀₀)	~

